Площа трикутника

\(S = \frac{{a{h_a}}}{2}\)

де  – ha висота, проведена до сторони а;

S = pr, p =( a +b+c)/2 ; r – радіус вписаного кола;

\(S = \frac{{abc}}{{4R}}\)

де R – радіус описаного кола;

\(S = \frac{1}{2}bc\sin \alpha \)

де α кут між сторонами b і с;

\(S = \sqrt {p(p – a)(p – b)(p – c)} \)

де p =( a +b+c)/2 формула Герона

Знайдіть найменший з кутів трикутника, сторони якого дорівнюють 2, 4, 5.

Знайдіть найменший з кутів трикутника, сторони якого дорівнюють 2, 4, 5.

За теоремою косинусів:

\(\cos C = \frac{{{a^2} + {b^2} – {c^2}}}{{2ab}}\)

Звідси: cosC = (16+25-4)/2*4*5 = 37/40=0,925

Відповідь: ≈ 22º

Знайдіть радіус кола описаного навколо трикутника у якому сторона довжиною 2 см лежить проти кута 30•

За теоремою синусів:

2R = a/sin α

R = a/2sin α = 2 см

Відповідь: 2 см

Основи рівнобічної трапеції дорівнюють 9 см і 21 см, а висота — 8 см. Знайдіть радіус кола, описаного навколо трапеції.

Основи рівнобічної трапеції дорівнюють 9 см і 21 см, а висота — 8 см. Знайдіть радіус кола, описаного навколо трапеції.

  • BC = 9cm
  • AD = 21 cm
  • BF = 8 cm

R-?

△АСK = прямокутний

За теоремою Піфагора: АС2 = АК2 + СК2

Звідси АС = 17 см

△ ABF: за теоремою Піфагора AB = 10cm

cos A = AF / AB = 6/10=0,6

sin A = 0,8

R = AC / 2sinA = 17 / 2*0,8 = 10,625

Відповідь: 10,625 см

Знайдіть радіус кола, описаного навколо рівнобедреного трикутника з основою 16 см і бічною стороною 10 см.

Знайдіть радіус кола, описаного навколо рівнобедреного трикутника з основою 16 см і бічною стороною 10 см.

AB=BC = 10cm; AC = 16 cm

За теоремою Піфагора ВК = 6 см

sinA = BK / AB = 3/5

R = BC/2sinA = 25/3

Відповідь:\( 8 {1\over 3} \)

Теорема синусів

Теорема синусів

Сторони трикутника пропорційні синусам протилежних кутів:

\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C},\)

де аbс – сторони трикутника, протилежні кутам АВС відповідно.

Наслідок 1. Радіус описаного кола трикутника можна обчислити за формулою:

\(R = \frac{a}{2 \sin A},\)

Наслідок 2. У трикутнику проти більшої сторони лежить більший кут, проти більшого кута лежить більша сторона.

Знайдіть сторони b і с трикутника АВС, якщо сторона а = 6 см, а ∠А:∠B:∠C = 3:5:4

Знайдіть сторони b і с трикутника АВС, якщо сторона а = 6 см, а ∠А:∠B:∠C = 3:5:4

∠А = 3x; ∠B = 5x; ∠C = 4x

3x+5x+4x = 180°

x = 15

∠А = 45°; ∠B = 75°; ∠C = 60°

Теорема сінусів:

\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}, \)

Звідси b = 6*sin 75° / sin 45° = 8 см

c = 6*sin60 ° / sin 45° = 7,3 см